
1

2

ActiveX Overview
Attention!

This module is licensed separately and can be not included in your package.

ActiveX allows to connect to the satellite tracking server Wialon™ through TCP/IP session

(Internet or LAN) from different OLE applications such as 1C, Excel, Visual Basic, Word, or

any HTML page.

ActiveX can be used also to create client connections which work with Wialon™ from

different IDE such as Visual C++, Visual Basic, Visual Basic for Application, Visual .NET,

Delphi, etc.

It is possible to maintain simultaneously an unlimited number of clients connected to different

Wialon™ servers through it.

WialoActiveX is designed as ActiveX COM server in the form of system DLL. The program is

ready to use right after the installation. It does not need any additional configuration.

This component is available in two versions: for 32-bit applications - WialonActiveX and for

64-bit applications - WialonActiveX64. Both of them can be installed simultaneously on

Windows x64 OS in order to be used in different kinds of applications.

3

Connecting ActiveX to Wialon
To connect to ActiveX COM server, you have to construct the object

WialonActiveX.WialonConnection that implements IWialonConnection interface.

Here is an example of a code in Visual Basic. It contains comments but does not contain error

check.

 ' The main component of the system that provides connection to

Wialon

 Dim Wialon As Object

 ' The collection of available units

 Dim Units As Object

 ' A certain unit

 Dim Unit As Object

 ' Wialon error string

 Dim ErrStr As String

 ' The collection of messages from a unit

 Dim Msgs As Object

 ' Counter

 Dim i As Long

 ' The number of units in the collection

 Dim CountOfUnits As Long

 ' Creating an object to connect to Wialon (for 64-bit applications -

WialonActiveX64)

 Wialon = CreateObject("WialonActiveX.WialonConnection")

 ' Connection check

 If Wialon Is Nothing Then

 ' In case of error, the alert is generated

 MsgBox("No Object")

 Return

 End If

 ' Adjusting connection settings through

 Wialon.SetProxyMode "ProxyHost", 8080, "Login:Passw"

 ' Getting all units available to the "user" with the "passw" from

the server

 ' "https://activex.gurtam.com" (prefix is required for secure

connection)

 ' at 443 port without proxy server

 Units = Wialon.Login("https://activex.gurtam.com", 443, "user",

"passw")

 ' Check for available units

 If Units Is Nothing Then

 ' If units are not available, ActiveX error is reported as well

as Wialon error

 MsgBox("Error = " + Err.Number.ToString() + ": " +

Err.Source.ToString() + " (" + Err.Description.ToString() + ")")

 ' Getting error from Wialon server

 ErrStr = Wialon.GetLastError()

 MsgBox("Wialon error: " + ErrStr)

 Return

 End If

 ' Getting the number of available units

 CountOfUnits = Units.Count

 ' Displaying a message box with the number of available units

 MsgBox("Units = " + CountOfUnits.ToString())

 ' Starting the cycle for units search

http://gurtam.com/en/docs/admin-guide/activex#iwialonconnection

4

 For i = 1 To CountOfUnits

 ' Getting a unit from the collection

 Unit = Units.Item(i)

 ' Check if the unit is available

 If Unit Is Nothing Then

 ' If the unit is not available, report the error

 MsgBox("Not unit")

 Return

 End If

 ' Adjusting the flag to get addresses by coordinayed. False -

without addresses (fast). True - with addresses (slow).

 Unit.ResolveLocations (False)

 ' Getting messages from a unit for the indicated period (time in

UNIX format)

 Msgs = Unit.GetMessages(1255112326, 1256312326)

 ' Check for messages availability

 If Msgs Is Nothing Then

 ' If there are no messages, display the alert

 MsgBox("No messages for unit: " + Unit.Name)

 Else

 ' Display the number of messages found

 MsgBox("Messages = " + Msgs.Count.ToString())

 ' Decrement the reference count for the given invoked

environment frame CLR

 ' (if explicit memory release is needed after using an

object)

 System.Runtime.InteropServices.Marshal.ReleaseComObject(Msgs)

 ' Releasing unit with messages

 Msgs = Nothing

 End If

 ' Decrement the reference count for the given invoked

environment frame CLR

 ' (if explicit memory release is needed after using an object)

 System.Runtime.InteropServices.Marshal.ReleaseComObject(Unit)

 ' Releasing unit with unit :)

 Unit = Nothing

 Next i

 ' Decrement the reference count for the given invoked environment

frame CLR

 ' (if explicit memory release is needed after using an object)

 System.Runtime.InteropServices.Marshal.ReleaseComObject(Units)

 ' This is the end of the program, we're not going to work with these

objects anymore, releasing

 Units = Nothing

 Wialon = Nothing

 ' End

 MsgBox("End")

More detailed example is available in Excel file delivered with ActiveX.

5

ActiveX API
To see the description of all available interfaces and their features, use available DLL sources

viewer.

Note.

Do not forget to free the storage space each time after using an object (example code for VBA:

Set Unit = Nothing).

Available interfaces:

 IWialonConnection – connection to ActiveX COM server.

 IWialonCollection – ActiveX collection of objects: IWialonUnit, IWialonUnitMsg,

IWialonParam, IWialonReport, IWialonUnitGroup.

 IWialonUnit – units to be tracked.

 IWialonUnitMsg – messages from units.

 IWialonParam – message parameters.

 IWialonReport – reports.

 IWialonUnitGroup – unit groups.

http://gurtam.com/en/docs/admin-guide/activex#iwialonconnection
http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection
http://gurtam.com/en/docs/admin-guide/activex#iwialonunit
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitmsg
http://gurtam.com/en/docs/admin-guide/activex#iwialonparam
http://gurtam.com/en/docs/admin-guide/activex#iwialonreport
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitgroup

6

IWialonConnection

IWialonConnection is the main interface which allows to connect to Wialon server and retrieve

needed objects from there.

Method Parameter Return Value Description

Login

till version 1.6

BSTR Host,
unsigned short

Port,
BSTR

UserName,

BSTR Password,

BSTR Proxy,

unsigned short

ProxyPort

since version 1.7

BSTR Host,
unsigned short

Port,
BSTR

UserName,

BSTR Password

IWialonCollection

**UnitsCol

To get all objects available to

the current user. It is required to

check each return value to be in

existence (Not Nothing) or

check return result (Error). To

get newer data, disconnect from

the server using the function

DisconnectDisconnect.

Note: Since the version 1.7

parameters for connection

through proxy server have been

located in a separate function

SetProxyMode.

GetLastError - BSTR* Error
To get the latest error from

Wialon.

Disconnect - -

Disconnect from Wialon server

in order to inquire fresh data

later on (refresh).

GetReportsList -
IWialonCollection

**ReportsCol

To get all available report

templates. It is required to

check each return value to be in

existence (Not Nothing) or

check return result (Error).

GetReportByID

unsigned From,

unsigned To,

long long UnitID,

int

TimeZoneOffset,
BSTR Lang,

long long

ResourceID,

long long

ReportID

BSTR*

ReportData

To get a report by report or

resource ID. This is an analogue

of the function Generate from

the IWialonReport interface.

Starting and end time (From -

To) is indicated in UNIX

format, that is in seconds from

the 1
st
 of January 1970. Unit ID

can be received from the

collection of available units.

Time zone (TimeZoneOffset) is

indicated in seconds, for

example, the value for Moscow

is 10800, the shift from the

prime meridian. The language

Lang is indicated like domains

http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection
http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection

7

(ru, en, etc). Report or resource

ID can be received from the

collection of available reports.

GetReportByIDU

int From,

int To,

int UnitID,

int

TimeZoneOffset,
BSTR Lang,

int ResourceID,

int ReportID

BSTR*

ReportData

This is an analogue of the

function GetReportByID

compatible with applications

which do not support 64-bit

integer numbers. Not available

in 64-bit version.

GetUnitGroups -
IWialonCollection

**UnitGroups

To get all available unit groups

IWialonUnitGroup.

GetUnitGroupByID
long long

UnitGroupID

IWialonUnitGroup

**UnitGroup

To get a unit group

IWialonUnitGroup by its ID.

GetUnitGroupByIDU int UnitGroupID
IWialonUnitGroup

**UnitGroup

The analogue of the function

GetUnitGroupByID compatible

with applications which do not

support 64-bit integer numbers.

Not available in 64-bit version.

SetProxyMode

BSTR Proxy,

unsigned short

ProxyPort,
BSTR

ProxyUserPwd

-

Set parameters to connect to

proxy server (host, port,

login:password).

Note: The function is available

since the version 1.7.

GetLocationsText
BSTR Lats,

BSTR Lons,

int Count
BSTR* Text

Get addresses by coordinates.

Coordinates must be in text

format separated with comma.

Use dot as decimal delimiter.

The number of coordinates is

set in the third parameter, so the

number of addresses, so the

number of addresses returned

will be as set. Addresses are

returned in text format,

separated with comma.

Note: The function is available

since the version 1.7.

http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitgroup
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitgroup
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitgroup
http://gurtam.com/en/docs/admin-guide/activex#iwialonunitgroup

8

IWialonCollection

This interface describes the collection of ActiveX objects. It can contain the following

interfaces: IWialonUnit, IWialonUnitMsg, IWialonParam.

Property Parameter Return
Value Description

Item long Index
IDispatch**

pVal

To get an object from the collection by the given index.

The indexes begin from one (1). It is required to check

each return value to be in existence (Not Nothing) or

check return result (Error).

Count - long *pVal To get the number of units contained in the collection.

9

IWialonUnit

This interface contains the description of units.

Method/Property Parameter Return Value Description
Name (property) - BSTR* Name To get unit name.

GUID (property) - BSTR* GUID
To get unit GUID (global

unique identifier).

ID (property) - long long* ID To get unit local ID.

IDU (property) - int* ID

The analogue of the function

ID compatible with

applications which do not

support 64-bit integer

numbers. Not available in 64-

bit version.

Phone (property) - BSTR* Phone

To get the phone number of

the SIM card installed on a

unit.

LastPosition
(property)

-
IWialonUnitMsg

**LastPos

To get the latest message from

the unit with its location.

GetMessages

(method)

unsigned From,

unsigned To

IWialonCollection

**MsgCol

To get the collection of

messages for the given period.

The time is indicated in UNIX

format, that is in seconds

beginning from the 1
st
 of

January 1970. It is required to

check each return value to be

in existence (Not Nothing) or

check return result (Error). To

speed up server work, it is

recommended to inquire

messages for up to 30 days.

GetMessagesU
(method)

int From, int To
IWialonCollection

**MsgCol

The analogue of the function

GetMessages compatible with

applications which do not

support 64-bit integer

numbers. Not available in 64-

bit version.

GetLastError
(method)

- BSTR* Error
To get the latest error from

Wialon.

ResolveLocations
(method)

BOOL

ResolveLocationsFlag
-

Set the option to define

location by coordinates when

getting message. If the option

is on, it considerably enlarges

time to get messages.

Note: The function is available

since the version 1.7.

http://gurtam.com/en/docs/admin-guide/activex#iwialonunitmsg
http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection
http://gurtam.com/en/docs/admin-guide/activex#iwialoncollection

10

IWialonUnitMsg

The interface containing the description of one message from a unit.

Property Parameter Return Value Description

Time -
unsigned*

Time

To get message time. The time is indicated in

UNIX format, that is in seconds beginning

from the 1
st
 of January 1970.

TimeU - int* Time

The analogue of the property Time compatible

with applications which do not support 64-bit

integer numbers. Not available in 64-bit

version.

Speed - int* Speed

To retrieve speed from a message. It is

required to check the result of function

operation because there can be no speed in a

message.

Course - int* Course

To get movement direction from a message. It

is required to check the result of function

operation because there can be no course in a

message.

X - double* X

To get longitude. It is required to check the

result of function operation because there can

be no location information in a message.

Y - double* Y

To get latitude. It is required to check the

result of function operation because there can

be no location information in a message.

Z - double* Z

To get altitude. It is required to check the

result of function operation because there can

be no location information in a message.

Type - BSTR* Type

To get message type: SMS, Data, CMD, etc.

- udp - message contains location and data

such as speed, course, number of satellites,

I/O, driver ID.

- ud - message contains only data from a

device such as I/O and driver ID.

- ucr - message contains information about an

executed command (command name,

parameters, user, link type, connector name,

execution time).

- us - message contains information about a

received SMS message (SMS text, phone

number).

- evt - message contains location of an event

happened.

CountSats - int* CountSats

To get the number of satellites which is

important to estimate coordinates accuracy. If

the number is 255, it means satellites are

locked successfully but their number is

unknown. It can happen if the device used

11

does not send such information in general. It is

required to check the result of function

operation because there can be no location

information in a message.

Param int Number
IWialonParam

**Param

To get messages parameter by its number. It is

required to check each return value to be in

existence (Not Nothing) or check return result

(Error).

Location -
BSTR*

Location
To get unit location in the from of address.

ParamCount -
long*

ParamCount To get the number of parameters in a message.

ParamByName
BSTR

ParamName

IWialonParam

**Param

To get a parameter by its name. It is required

to check each return value to be in existence

(Not Nothing) or check return result (Error).

SMSText - BSTR* SMS To get SMS text (only for SMS messages).

Driver - BSTR* Driver To get driver's name if known.

CMDName -
BSTR*

CMDName
To get command name if known.

CMDParam -
BSTR*

CMDParam
To get command parameters if known.

UserGUID -
BSTR*

UserGUID

To get the name the user who executed the

command (if known).

LinkName -
BSTR*

LinkName

To get the name of hardware which were used

to connect to the unit for command execution

(if known).

LinkType -
BSTR*

LinkType

To get link type (UDP, TCP, GSM) used to

execute a command (if known).

ModemPhone -
BSTR*

ModemPhone

To get the number of the modem used to

execute a command (if known).

EventText -
BSTR*

EventText To get event text if there is such.

http://gurtam.com/en/docs/admin-guide/activex#iwialonparam
http://gurtam.com/en/docs/admin-guide/activex#iwialonparam

12

IWialonParam

The interface contains the description of parameters in a message.

Property Param Return Value Description

Type -
BSTR*

Type
To get message type (int, double, string).

Name - BSTR* Name To get parameter name.

Value -
VARIANT*

Value

To get parameter value. Previously, you should get to know

data type in VARIANT - to do this use the function

Value.Type or VarType(Value).

ValueStr - BSTR* Value
The analogue of the property Value compatible with

applications which do not support VARIANT data type.

13

IWialonReport

This interface allows to retrieve reports from the monitoring site. Only ready report templates

can be used. Creating new report templates is impossible here. To generate a report, the

function GetReportByID from IWialonConnection interface can be used instead.

Method/Property Parameter Return Value Description

Generate
(method)

unsigned From,

unsigned To,

long long UnitID,

int

TimeZoneOffset,
BSTR Lang

BSTR*

XMLData

To generate a report on the server and

get it in the form of XML string. Starting

and end time (From - To) is indicated in

UNIX format, that is in seconds from the

1
st
 of January 1970. Unit ID can be

received from the collection of available

units. Time zone (TimeZoneOffset) is

indicated in seconds, for example, the

value for Moscow is 10800, the shift

from the prime meridian. The language

Lang is indicated like domains (ru, en,

etc).

GenerateU
(method)

int From,

int To,

int UnitID,

int

TimeZoneOffset,
BSTR Lang

BSTR*

XMLData

The analogue of the function Generate

compatible with applications which do

not support 64-bit integer numbers. Not

available in 64-bit version.

Name (property) -
BSTR*

ReportName

To get report name. Not available in 64-

bit version.

ReportID
(property)

-
long long*

ReportID
To get report unique ID.

ReportIDU
(property)

-
int*

ReportID

The analogue of the property ReportID

compatible with applications which do

not support 64-bit integer numbers. Not

available in 64-bit version.

ResourceID
(property)

-
long long*

ResourceID

To get the unique ID of the resource

where a report template belongs to.

ResourceIDU
(property)

-
int*

ResourceID

The analogue of the property

ResourceID compatible with applications

which do not support 64-bit integer

numbers. Not available in 64-bit version.

http://gurtam.com/en/docs/admin-guide/activex#iwialonconnection

14

IWialonUnitGroup

The interface contains the description of unit groups. To get unit groups collection see

IWialonConnection.

Method/Property Parameter Return Value Description

Name (property) -
BSTR*

UnitGroupName

To get the name of current unit

group.

ID (property) -
long long*

UnitGroupID
To get unit group unique ID.

IDU (property) - int* UnitGroupID

The analogue of the property ID

compatible with applications which

do not support 64-bit integer

numbers. Not available in 64-bit

version.

GetUnits (method) -
IWialonCollection

**UnitsCol
To get collection of the units in the

group.

CheckUnitInGroup
(method)

long long

UnitID

BOOL*

UnitInGroup

To check whether a unit with the

given ID belongs to the given group.

CheckUnitInGroupU
(method)

int UnitID
BOOL*

UnitInGroup

The analogue of the function

CheckUnitInGroup compatible with

applications which do not support

64-bit integer numbers. Not

available in 64-bit version.

http://gurtam.com/en/docs/admin-guide/activex#iwialonconnection
http://gurtam.com/en/docs/admin-guide/activex#iwialonconnection

15

Compatibility
The functions with the ending U are intended to create compatibility with 64-bit integer

numbers (1C 7th version). This ending indicates that the function will get or return all values as

usual 32-bit integer numbers (signed integer).

All duplicated functions and properties are interchangeable. If your application can support 64-

bit integer numbers, it is recommended to use the functions which support this digital capacity,

that is without U ending.

Always use homogeneous functions. It means, if you are working with 64-bit integer numbers,

use them throughout the application. The same is for 32-bit systems.

For 64-bit operating systems there is a special component - WialonActiveX64. It works only

with 64-bit applications. For 32-bit applications installed on 64-bit OS, use 32-bit component

WialonActiveX.

16

Garbage Collector
System garbage collector is a service that automatically reclaims unused memory. See GC

Class for details.

If using ActiveX you notice that the garbage collector rarely cleans the main memory, in your

program code you can decrement the count of references to object before the garbage collector

is activated. To do this, use the following code (VB):

 System.Runtime.InteropServices.Marshal.ReleaseComObject(object)

 object = Nothing

It will allow you to free the memory beeing used by an object if its references count is zero. See

Marshal.ReleaseComObject Method for more details.

An alternative way to clean the memory is a method of forced garbage collection (VB):

 GB.Collect()

See GC.Collect Method for the full description of the method.

http://msdn.microsoft.com/en-us/library/system.gc.aspx
http://msdn.microsoft.com/en-us/library/system.gc.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.releasecomobject.aspx
http://msdn.microsoft.com/en-us/library/system.gc.collect.aspx

17

Errors
Each function or method activated in the program returns an error code. Below see the list of

more frequent errors which can help you to detect the problem:

Error
Code Description

0 Succeeded.

1 Unknown error.

-1 Non-supported protocol.

-2
Error initializing connection. It can happen when trying to create an object

IWialonConnection repeatedly.

-3 Invalid URL address.

-5 Error to resolve proxy server name.

-6 Error to resolve server name.

-7
Error connecting to the given address. It can happen when firewall or antivirus

program are set incorrectly.

-9 Access to server denied.

-18
Insufficient data. It is possible if connection to server is broken or in case of server

abnormal termination.

-22 Http error.

-27 Internal error while executing query.

-28 Execution timeout is exceeded.

-34 POST query error.

-35 Error connecting through a protected connection (SSL).

-36 It is impossible to continue loading. Connection may be broken.

-47 Too many redirections.

-51 Certificate error.

-55 Data communication error.

-56 Data acquisition error.

-80 Incorrect SSL connection termination.

-81
The socket is not ready to data sending or acquisition. Maybe, all sockets are busy -

try to upload unusable applications.

-95 Wialon server error. Use the function GetLastError to retrieve the error text.

-96
Error when operating file input/output. It can happen if the user who is executing the

program does not have enough access to read and record data in the temporary folder.

-97
Error processing data. Maybe, the server returned invalid data or was abnormally

terminated while executing the inquiry.

-98
Error processing data. Maybe, the server returned nothing or was abnormally

terminated while executing the inquiry.

-99
Inquiry to the server is impossible because of incorrect product settings. Please,

reinstall ActiveX.

-300 Error when parsing data received from the server.

18

-301 Error when parsing data received from the server.

-302 Error when parsing data received from the server.

-303 Error when parsing data received from the server.

-304
Error while creating objects. It may be caused by memory lack or if you inquire too

many messages. Close other applications and retry.

-305 Not enough memory to unpack data. Close other applications and retry.

	ActiveX Guide (from 2011.05.24)
	ActiveX Overview
	Connecting ActiveX to Wialon
	ActiveX API
	IWialonConnection
	IWialonCollection
	IWialonUnit
	IWialonUnitMsg
	IWialonParam
	IWialonReport
	IWialonUnitGroup

	Compatibility
	Garbage Collector
	Errors

